Energías Renovables
lunes, 21 de marzo de 2011
domingo, 20 de marzo de 2011
Indice
ÍNDICE
1. Introducción
2. Energía solar
3. Energía Eólica
4. Energía Hidraulica
5. Biomasa
6. Geotérmica
5. Biomasa
6. Geotérmica
sábado, 19 de marzo de 2011
Introducción
Las energías renovables son aquellas que se producen de forma continua y son inagotables a escala humana: solar, eólica, hidráulica, biomasa y geotérmica. Las energías renovables son fuentes de abastecimiento energético respetuosas con el medio ambiente.
Son fuentes de abastecimiento que respetan el medio ambiente. Lo que no significa que no ocasionen efectos negativos sobre el entorno, pero éstos son infinitamente menores si los comparamos con los impactos ambientales de las energías convencionales (combustibles fósiles: petróleo, gas y carbón; energía nuclear, etc.) y además son casi siempre reversibles. Según un estudio sobre los "Impactos Ambientales de la Producción de Electricidad" el impacto ambiental en la generación de electricidad de las energías convencionales es 31 veces superior al de las energías renovables.
Como ventajas medioambientales importantes podemos destacar la no emisión de gases contaminantes como los resultantes de la combustión de combustibles fósiles, responsables del calentamiento global del planeta (CO2) y de la lluvia ácida (SO2 y NOx) y la no generación de residuos peligrosos de difícil tratamiento y que suponen durante generaciones una amenaza para el medio ambiente como los residuos radiactivos relacionados con el uso de la energía nuclear.
Otras ventajas a señalar de las energías renovables son su contribución al equilibrio territorial, ya que pueden instalarse en zonas rurales y aisladas, y a la disminución de la dependencia de suministros externos, ya que las energías renovables son autóctonas, mientras que los combustibles fósiles sólo se encuentran en un número limitado de países.
El sol está en el origen de toda las energías renovables
Provoca en la Tierra las diferencias de presión que dan origen a los vientos: fuente de la energía eólica.
Ordena el ciclo del agua, causa la evaporación que provoca la formación de las nubes y, por tanto, las lluvias: fuente de la energía hidráulica.
Sirve a las plantas para su vida y crecimiento: fuente de la biomasa.
Es la fuente directa de la energía solar, tanto la térmica como la fotovoltaica.
Una de las energías renovables más competitivas es la eólica
La energía del viento se deriva del calentamiento diferencial de la atmósfera por el sol, y las irregularidades de la superficie terrestre. Aunque sólo una pequeña parte de la energía solar que llega a la tierra se convierte en energía cinética del viento, la cantidad total es enorme.
Con la ayuda de los aerogeneradores o generadores eólicos podemos convertir la fuerza del viento en electricidad. Éstos tienen usos muy diversos y pueden satisfacer demandas de pequeña potencia (bombeo de agua, electrificación rural, etc.) o agruparse y formar parques eólicos conectados a la red eléctrica.
Durante siglos el viento ha movido las aspas de los molinos utilizados para moler el grano o bombear agua. Por ello, tras siglos de mejoras técnicas, la energía eólica es en la actualidad una de las energías renovables más competitivas.
Energía solar
La energía solar se fundamenta en el aprovechamiento de la radiación solar para la obtención de energía que podemos aprovechar directamente en forma de calor o bien podemos convertir en electricidad.
Calor: la energía solar térmica consiste en el aprovechamiento de la radiación que proviene del sol, para la producción de agua caliente, para consumo doméstico o industrial, climatización de piscinas, calefacción de nuestros hogares, hoteles, colegios, fábricas, etc.
Electricidad: energía solar fotovoltaica permite transformar en electricidad la radiación solar a través de unas células fotovoltaicas o placas solares. La electricidad producida puede usarse de manera directa (por ejemplo para sacar agua de un pozo o para regar, mediante un motor eléctrico), o bien ser almacenada en acumuladores para usarse en las horas nocturnas. Incluso es posible inyectar la electricidad sobrante a la red general, obteniendo un importante beneficio.
La energía solar fotovoltaica tiene numerosas aplicaciones.
Funcionamiento de aparatos de consumo pequeño, calculadoras, relojes, etc.
Electrificación de viviendas o núcleos de población aislados.
Señalizaciones terrestres y marítimas.
Comunicaciones o iluminación pública.
Durante el presente año, el Sol arrojará sobre la Tierra cuatro mil veces más energía que la que vamos a consumir.
Energía hidráulica
La energía hidráulica tiene su origen en el "ciclo del agua", generado por el Sol, al evaporar las aguas de los mares, lagos, etc. Este agua cae en forma de lluvia y nieve sobre la Tierra y vuelve hasta el mar, donde el ciclo se reinicia.
La energía hidráulica se obtiene a partir de la energía potencial asociada a los saltos de agua y a la diferencia de alturas entre dos puntos del curso de un río.
Las centrales hidroeléctricas transforman en energía eléctrica el movimiento de las turbinas que se genera al precipitar una masa de agua entre dos puntos a diferente altura y, por tanto a gran velocidad.
Hay diversos tipos de centrales hidroeléctricas en función de su tamaño.
Las grandes centrales hidroeléctricas.
Las centrales mini hidráulicas o minicentrales. Éstas no requieren grandes embalses reguladores y por tanto su impacto ambiental es mucho menor.
viernes, 18 de marzo de 2011
Energía Solar
LA ENERGÍA SOLAR
La energía solar es la energía obtenida mediante la captación de la luz y el calor emitidos por el Sol.
La radiación solar que alcanza la Tierra puede aprovecharse por medio del calor que produce a través de la absorción de la radiación, por ejemplo en dispositivos ópticos o de otro tipo. Es una de las llamadas energías renovables, particularmente del grupo no contaminante, conocido como energía limpia o energía verde. Si bien, al final de su vida útil, los paneles fotovoltaicos pueden suponer un residuo contaminante difícilmente reciclable al día de hoy.
La potencia de la radiación varía según el momento del día, las condiciones atmosféricas que la amortiguan y la latitud. Se puede asumir que en buenas condiciones de irradiación el valor es de aproximadamente 1000 W/m² en la superficie terrestre. A esta potencia se la conoce como irradiancia.
La radiación es aprovechable en sus componentes directa y difusa, o en la suma de ambas. La radiación directa es la que llega directamente del foco solar, sin reflexiones o refracciones intermedias. La difusa es la emitida por la bóveda celeste diurna gracias a los múltiples fenómenos de reflexión y refracción solar en la atmósfera, en las nubes y el resto de elementos atmosféricos y terrestres. La radiación directa puede reflejarse y concentrarse para su utilización, mientras que no es posible concentrar la luz difusa que proviene de todas las direcciones.
La irradiancia directa normal (o perpendicular a los rayos solares) fuera de la atmósfera, recibe el nombre de constante solar y tiene un valor medio de 1354 W/m² (que corresponde a un valor máximo en el perielio de 1395 W/m² y un valor mínimo en el afelio de 1308 W/m² ).
Según informes de Greenpeace , la energía solar fotovoltaica podría suministrar electricidad a dos tercios de la población mundial en 2030.
La Tierra recibe 174 petavatios de radiación solar entrante (insolación) desde la capa más alta de la atmósfera. Aproximadamente el 30% es reflejada de vuelta al espacio mientras que el resto es absorbida por las nubes, los océanos y las masas terrestres. El espectro electromagnético de la luz solar en la superficie terrestre está ocupado principalmente por luz visible y rangos de infrarrojos con una pequeña parte de radiación ultravioleta. La radiación absorbida por los océanos, las nubes y las masas de tierra incrementan la temperatura de éstas. El aire calentado contiene agua evaporada que asciende de los océanos, y también en parte de los continentes, causando circulación atmosférica o convección. Cuando el aire asciende a las capas altas, donde la temperatura es baja, va disminuyendo su temperatura hasta que el vapor de agua se condensa formando nubes. El calor latente de la condensación del agua amplifica la convección, produciendo fenómenos como el viento, borrascas y anticiclones. La energía solar absorbida por los océanos y masas terrestres mantiene la superficie a 14 °C. Para la fotosíntesis de las plantas verdes la energía solar se convierte en energía química, que produce alimento, madera y biomasa, de la cual derivan también los combustibles fósiles.
Se estima que la energía total que absorben la atmósfera, los océanos y los continentes puede ser de 3.850.000 exajulios por año. En 2002, esta energía en un segundo equivalía al consumo global mundial de energía durante un año. La fotosíntesis captura aproximadamente 3.000 EJ por año en biomasa, lo que representa solo el 0,08% de la energía recibida por la Tierra . La cantidad de energía solar recibida anual es tan vasta que equivale aproximadamente al doble de toda la energía producida jamás por otras fuentes de energía no renovable como son el petróleo, el carbón, el uranio y el gas natural.
Los rendimientos típicos de una célula fotovoltaica (aislada) de silicio policristalina oscilan alrededor del 10%. Para células de silicio monocristalino, los valores oscilan en el 15%. Los más altos se consiguen con los colectores solares térmicos a baja temperatura (que puede alcanzar un 70% de rendimiento en la transferencia de energía solar a térmica).
También la energía solar termoeléctrica de baja temperatura, con el sistema de nuevo desarrollo, ronda el 50% en sus primeras versiones. Tiene la ventaja que puede funcionar 24 horas al día a base de agua caliente almacenada durante las horas de sol.
Los paneles solares fotovoltaicos tienen, como hemos visto, un rendimiento en torno al 15 % y no producen calor que se pueda reaprovechar -aunque hay líneas de investigación sobre paneles híbridos que permiten generar energía eléctrica y térmica simultáneamente. Sin embargo, son muy apropiados para instalaciones sencillas en azoteas y de autoabastecimiento -proyectos de electrificación rural en zonas que no cuentan con red eléctrica-, aunque su precio es todavía alto. Para incentivar el desarrollo de la tecnología con miras a alcanzar la paridad -igualar el precio de obtención de la energía al de otras fuentes más económicas en la actualidad-, existen primas a la producción, que garantizan un precio fijo de compra por parte de la red eléctrica. En el caso de Alemania, Italia o España.
También se estudia obtener energía de la fotosíntesis de algas y plantas, con un rendimiento del 3%.
Según un estudio publicado en 2007 por el World Energy Council, para el año 2100 el 70% de la energía consumida será de origen solar. Según informes de Greenpeace, la fotovoltaica podrá suministrar electricidad a dos tercios de la población mundial en 2030.
jueves, 17 de marzo de 2011
Energía Eólica
ENERGÍA EÓLICA
La energía eólica en España es una fuente de energía eléctrica renovable. A 31 de diciembre de 2010 la potencia eólica instalada era de 19.959 MW (20 % del total del sistema eléctrico nacional), cubriendo durante ese año el 16 % de la demanda eléctrica. siendo así el tercer país en el mundo en cuanto a potencia instalada, por detrás de Alemania y EEUU. Además, desde el 2009 se trata así mismo de la tercera fuente de energía tras superar a la generada mediante carbón.
España producía a mediados de 2007, el 20 % de la energía eólica mundial.
Desde la década de 2000 ha sufrido un aumento espectacular, incentivada por una legislación que estimulaba fuertemente las inversiones en este sector (Real Decreto 661/2007, de 25 de mayo ) mediante primas.
El día 9 de noviembre de 2010 se produjo el máximo histórico de producción instántanea con 14.962 MW a las 14:46 lo cual supuso el 46,65% de la generación eléctrica instantánea. Asimismo se produjo ese día el máximo de producción horaria con 14.752 MWh entre las 14 y las 15 horas y de producción diaria con 315.258 MWh. Esta es una potencia superior (casi el doble) a la capacidad de generación de las seis centrales nucleares que hay en España (7.742,32 MW).
En 2005, el Gobierno de España aprobó una nueva ley nacional con el objetivo de llegar a los 20.000 MW de producción en 2010. El plan energético español prevée generar el 30% de su energía de las energías renovables hasta llegar a los 20,1 GW en 2010 y los 36 GW en 2020. Se espera que la mitad de esta energía provenga del sector eólico, con lo que se evitaría la emisión de 77 millones de toneladas de dióxido de carbono a la atmósfera .
Desde mediados de los años 90, la evolución de la potencia instalada eólica ha aumentado espectacularmente desde un 1,54 % en 1998, a un 17,6 % diez años después, en 2008.
miércoles, 16 de marzo de 2011
Energía Hidraulica
ENERGÍA HIDRAULICA
Se denomina energía hidráulica o energía hídrica a aquella que se obtiene del aprovechamiento de las energías cinética y potencial de la corriente del agua, saltos de agua o mareas. Es un tipo de energía verde cuando su impacto ambiental es mínimo y usa la fuerza hídrica sin represarla, en caso contrario es considerada sólo una forma de energía renovable.
Se puede transformar a muy diferentes escalas, existen desde hace siglos pequeñas explotaciones en las que la corriente de un río mueve un rotor de palas y genera un movimiento aplicado, por ejemplo, en molinos rurales. Sin embargo, la utilización más significativa la constituyen las centrales hidroeléctricas de represas, aunque estas últimas no son consideradas formas de energía verde por el alto impacto ambiental que producen.
Cuando el Sol calienta la tierra, además de generar corrientes de aire, hace que el agua de los mares, principalmente, se evapore y ascienda por el aire y se mueva hacia las regiones montañosas, para luego caer en forma de lluvia. Esta agua se puede colectar y retener mediante presas. Parte del agua almacenada se deja salir para que se mueva los álabes de una turbina engranada con un generador de energía eléctrica.
Estas características hacen que sea significativa en regiones donde existe una combinación adecuada de lluvias, desniveles geológicos y orografía favorable para la construcción de represas. La energía hidráulica se obtiene a partir de la energía potencial y cinética contenida en las masas de agua que transportan los ríos, provenientes de la lluvia y del deshielo. El agua en su caída entre dos niveles del cauce se hace pasar por una turbina hidráulica la cual trasmite la energía a un alternador el cual la convierte en energía eléctrica.
Ventajas e inconvenientes
Ventajas
Se trata de una energía renovable y limpia de alto rendimiento energético.
Ventajas económicas
La gran ventaja de la energía hidráulica es la eliminación de los deshechos producidos por las ruedas de coches de Tenerife. El costo de operar una planta hidráulica es casi inmune a la volatilidad de los combustibles fósiles como la gasolina, el carbón o el gas natural. Además, no hay necesidad de importar combustibles de otros países.
Las plantas hidráulicas también tienden a tener vidas económicas mas largas que las plantas eléctricas que utilizan combustibles. Sin embargo, hay plantas hidráulicas que siguen operando después de 50 a 100 años. Los costos de operación son bajos por que las plantas están automatizadas y tienen pocas personas durante operación normal. Estas plantas producen la misma cantidad de dióxido de carbono en comparación con la materia gris del planeta. Este hecho es beneficioso para la salud.
Como las plantas hidráulicas no queman combustibles, no producen directamente dióxido de carbono. Un poco de dióxido de carbono es producido durante el período de construcción de las plantas, pero es poco, especialmente en comparación a las emisiones de una planta equivalente que quema combustibles.
Inconvenientes
Pueden ser varios:
- La construcción de grandes embalses puede inundar importantes extensiones de terreno, obviamente en función de la topografía del terreno aguas arriba de la presa, lo que significa perdida de tierras del valle, generalmente las más fértiles;
- En el pasado se han construido embalses que han inundado pueblos enteros. Con el crecimiento de la conciencia ambiental, estos hechos son actualmente menos frecuentes, pero aun persisten;
- Destrucción de la naturaleza. Presas y embalses pueden ser disruptivas a los ecosistemas acuáticos. Por ejemplo, estudios han mostrado que las presas en las costas de Norteamérica han reducido las poblaciones de trucha septentrional común que necesitan migrar a ciertos locales para reproducirse. Hay bastantes estudios buscando soluciones a este tipo de problema. Un ejemplo es la invención de un tipo de escalera para los peces;
- Cambia los ecosistemas en el río aguas abajo. El agua que sale de las turbinas no tiene prácticamente sedimento. Esto puede resultar en la erosión de las márgenes de los ríos.
- Cuando las turbinas se abren y cierran repetidas veces, el caudal del río se puede modificar drásticamente causando una dramática alteración en los ecosistemas.
Medidas de mitigación
A lo largo de la segunda mitad del siglo XX se ha visto crecer en forma importante la conciencia ambiental, de la gente, de los gobiernos y de las instituciones internacionales de crédito, que son en última instancia quienes financian los grandes proyectos hidroeléctricos.
Actualmente las medidas de mitigación ambiental forman parte integrante de todos los proyectos financiados por instituciones de crédito multilaterales, y los costos de las medidas de mitigación son incluidos en el costo del proyecto.
martes, 15 de marzo de 2011
Biomasa
BIOMASA
Biomasa, según el Diccionario de la Real Academia Española, tiene dos acepciones:
- f. Biol. Materia total de los seres que viven en un lugar determinado, expresada en peso por unidad de área o de volumen.
- f. Biol. Materia orgánica originada en un proceso biológico, espontáneo o provocado, utilizable como fuente de energía.
La primera acepción se utiliza habitualmente en Ecología. La segunda acepción, más restringida, se refiere a la biomasa 'útil' en términos energéticos: las plantas transforman la energía radiante del Sol en energía química a través de la fotosíntesis, y parte de esa energía química queda almacenada en forma de materia orgánica; la energía química de la biomasa puede recuperarse quemándola directamente o transformándola en combustible (ésta es la única acepción recogida en la wikipedia inglesa en junio de 2008).
Un equívoco muy común es confundir 'materia orgánica' con 'materia viva', pero basta considerar un árbol, en el que la mayor parte de la masa está muerta, para deshacer el equívoco; de hecho, es precisamente la biomasa 'muerta' la que en el árbol resulta más útil en términos energéticos. Se trata de un debate importante en ecología, como muestra esta apreciación de Margalef (1980:12):
Todo ecólogo empeñado en estimar la biomasa de un bosque se enfrenta, tarde o temprano, con un problema. ¿Deberá incluir también la madera, y quizás incluso la hojarasca y el mantillo? Una gran proporción de la madera no se puede calificar de materia viva, pero es importante como elemento de estructura y de transporte, y la materia orgánica del suelo es también un factor de estructura.
Otro equívoco muy común es utilizar 'biomasa' como sinónimo de la energía útil que puede extraerse de ella, lo que genera bastante confusión debido a que la relación entre la energía útil y la biomasa es muy variable y depende de innumerables factores. Para empezar, la energía útil puede extraerse por combustión directa de biomasa (madera, excrementos animales, etc), pero también de la combustión de combustibles obtenidos de ella mediante transformaciones físicas o químicas (gas metano de los residuos orgánicos, por ejemplo), procesos en los que 'siempre' se pierde algo de la energía útil original. Además, la biomasa puede ser útil directamente como materia orgánica en forma de abono y tratamiento de suelos (por ejemplo, el uso de estiércol o de coberturas vegetales). Y por supuesto no puede olvidarse su utilidad más común: servir de alimento a muy diversos organismos, la humanidad incluida .
La biomasa de la madera, residuos agrícolas y estiércol continúa siendo una fuente principal de energía y materia útiles en países poco industrializados.
En la primera acepción, es la masa total de toda la materia que forma un organismo, una población o un ecosistema y tiende a mantenerse más o menos constante. Su medida es difícil en el caso de los ecosistemas. Por lo general, se da en unidades de masa por cada unidad de superficie. Es frecuente medir la materia seca (excluyendo el agua). En la pluviselva del Amazonas puede haber una biomasa de plantas de 1.100 toneladas por hectárea de tierra.
Pero mucho más frecuente es el interés en la 'producción neta' de un ecosistema, es decir, la nueva materia orgánica generada en la unidad de superficie a lo largo de una unidad tiempo, por ejemplo, en una hectárea y a lo largo de un año. En teoría, en un ecosistema que ha alcanzado el clímax la producción neta es nula o muy pequeña: el ecosistema simplemente renueva su biomasa sin crecimiento a la vez que la biomasa total alcanza su valor máximo. Por ello la biomasa es uno de los atributos más relevantes para caracterizar el estado de un ecosistema o el proceso de sucesión ecológica en un territorio (véase, por ejemplo, Odum, 1969).
En términos energéticos, se puede utilizar directamente, como es el caso de la leña, o indirectamente en forma de biocombustibles (biodiésel, bioalcohol, biogás, bloque sólido combustible). Pero al igual que no consideramos al vino como biomasa, debe evitarse denominar como biomasa a los biocombustibles (nótese que el etanol puede obtenerse del vino por destilación): 'biomasa' debe reservarse para denominar la materia prima empleada en la fabricación de biocombustibles.
La biomasa podría proporcionar energías sustitutivas a los combustibles fósiles, gracias a biocombustibles líquidos (como el biodiésel o el bioetanol), gaseosos (gas metano) o sólidos (leña), pero todo depende de que no se emplee más biomasa que la producción neta del ecosistema explotado, de que no se incurra en otros consumos de combustibles en los procesos de transformación, y de que la utilidad energética sea la más oportuna frente a otros usos posibles (como abono y alimento, véase la discusión que para España plantea Carpintero, 2006).
Actualmente (2009), la biomasa proporciona combustibles complementarios a los fósiles, ayudando al crecimiento del consumo mundial (y de sus correspondientes impactos ambientales), sobre todo en el sector transporte (Estevan, 2008). Este hecho contribuye a la ya amplia apropiación humana del producto total de la fotosíntesis en el planeta, que supera actualmente más de la mitad del total (Naredo y Valero, 1999), apropiación en la que competimos con el resto de las especies.
La biomasa, como recurso energético, puede clasificarse en biomasa natural, residual y los cultivos energéticos.
- La biomasa natural es la que se produce en la naturaleza sin intervención humana. Por ejemplo, las podas naturales de los bosques.
- La biomasa residual es el subproducto o residuo generado en las actividades agrícolas (poda, rastrojos, etc.), silvícolas y ganaderas, así como residuos de la industria agroalimentaria (alpechines, bagazos, cáscaras, vinazas, etc.) y en la industria de transformación de la madera (aserraderos, fábricas de papel, muebles, etc.), así como residuos de depuradoras y el reciclado de aceites.
- Los cultivos energéticos son aquellos que están destinados a la producción de biocombustibles. Además de los cultivos existentes para la industria alimentaria (cereales y remolacha para producción de bioetanol y oleaginosas para producción de biodiésel), existen otros cultivos como los lignocelulósicos forestales y herbáceos.
Suscribirse a:
Entradas (Atom)